

Clontech TakaRa cellartis

Innovative CRISPR/Cas9 gene knockin and SNP-detection tools:

Establishing human iPS-derived disease model lines for drug screening

Elizabeth Quinn, PhD

Society for Laboratory Automation and Screening (SLAS) 2018 conference

Outline

- Introduction to genome editing and hiPSCs
- Knocking out genes in hiPSCs
 - Key considerations
 - Test case: generation of clonal cell lines with KO in CD81
- Knocking in genes in hiPSCs
 - Key considerations
 - Knockin of point mutations using ssDNA oligos (<200 bp)
 - Knockin of longer sequences (>200 bp) with ssDNA repair template

Genome editing technologies

CRISPR/Cas9: bacterial mechanism of self-defense repurposed as an editing tool

Dominguez et al. Nat Rev Mol Cell Biol. 17, 5–15 (2016).

Human iPSCs meet genome editing

Application of CRISPR/Cas9 in hiPSC-based disease modeling

Shi et al. Nat Reviews Drug Discovery 16, 115–130 (2017).

Knockout

Knocking out genes in hiPSCs

Experimental design is essential in order to maximize success.

© 2018 Takara Bio USA, Inc. All rights reserved.

Knocking out genes in hiPSCs Key considerations

- Take into account different protein isoforms and alternative start codons
- Design sgRNAs targeting key exons or essential functional domains
- Use online tools to choose sgRNAs with predicted low off-target effects (http://chopchop.cbu.uib.no/index.php, https://www.deskgen.com/landing/)
- Check sgRNAs' activity *in vitro* (Guide-it[™] sgRNA Screening Kit)
- Use optimized sgRNA scaffold

Knocking out genes in hiPSCs Key considerations

- Minimize cell toxicity due to the delivery of the Cas9-sgRNA
- Delivery in the form of CRISPR/Cas9 ribonucleoprotein complex (RNP)
 - Lowest toxicity in cells
 - No need for cellular transcription/translation machinery
 - Relative transience: lower off-target effects
 - No integration events: footprint-free genome editing

Guide-it rCas9 Electroporation Ready

Recombinant Cas9 purified from *E. coli* and ready for gene editing experiments using electroporation

- Sterile
- Contains one C-terminus Nuclear Localization Signal (NLS) protein
- Low glycerol content for higher electroporation efficiency/reduced toxicity
- Consistently effective when combined with Guide-it *In Vitro* sgRNA Transcription Kit
- Mix rCas9 and sgRNA, incubate for 5 minutes, and then use!

Guide-it rCas9 Electroporation Ready KO of CD81 protein in hiPSCs

Edited population

Knocking out genes in hiPSCs Key considerations

- Minimize cell toxicity due to the delivery of the Cas9-sgRNA
- Delivery in the form of CRISPR/Cas9 ribonucleoprotein complex (RNP)
 - Lowest toxicity in cells
 - No need for cellular transcription/translation machinery
 - Relative transience: lower off-target effects
 - No integration events: footprint-free genome editing

Knocking out genes in hiPSCs Key considerations

- Isolating and clonally expanding edited cells
 - Single pluripotent cells die or differentiate when seeded alone
 - Need for single-cell culture of pluripotent stem cells

Single-cell cloning of hiPSCs with the Cellartis® DEF-CS[™] culture system

- Maintains cells in a highly undifferentiated state
- Allows for culturing iPS cells in a monolayer
- Feeder-free—no contamination, less time consuming, increased consistency
- Enables survival and expansion of single cells
- Maintains normal karyotype
- Allows rapid expansion for further downstream applications and analysis

Knocking out genes in hiPSCs Key considerations

- Check pluripotency
- Check karyotype
- Characterization of the indels (Guide-it Indel Identification Kit)
- Check for nonexpression of your transcript by RT-PCR

Sharpe et al. Genome Biology 18, 109-113 (2017).

Test case: knocking out CD81 Workflow

Pluripotency maintained after CD81 KO

Cloning of edited hiPSCs FACS or limiting dilution

Cell line	Isolation method	Single clones	Double clones	Total clones (proportion)	Total clones (%)
ChiPSC18	FACS	52	0	52/96	54%
ChiPSC18	Limiting dilution	46	12	58/55	105%*

*Percent expected versus total theoretical clones

Expansion of edited clonal lines

Edited, pluripotent single-cell clones The DEF-CS culture system maintains stemness

Edited, pluripotent single-cell clones Karyotype analysis

Knockin

Knocking in genes in hiPSCs Key considerations

- Check the sequence of the homologous recombination arms
- Pick sgRNAs as close as possible to the modification

Knocking in genes in hiPSCs Efficiency of SNP repair relies on close proximity to PAM site

Knocking in genes in hiPSCs Key considerations

- Check the sequence of the homologous recombination arms
- Pick sgRNAs as close as possible to the DSB
- Use single-stranded donor templates
 - No background expression when delivering expression cassettes (e.g. CMV→GFP)
 - Lower rate of random integration than dsDNA

Chen et al. Nature Methods 8, 753-755 (2011)

Knocking in genes in hiPSCs Random integration of dsDNA donors: GAPDH-AcGFP fusion in HEK293

Knocking in genes in hiPSCs Key considerations

- Check the sequence of the homologous recombination arms
- Pick sgRNAs as close as possible to the DSB
- Use single-stranded donor templates
 - No background expression when delivering expression cassettes (e.g. CMV→GFP)
 - Lower rate of random integration than dsDNA
 - Lower toxicity than dsDNA donors

Knocking in genes in hiPSCs ssDNA is less toxic than dsDNA

Cellular toxicity induced by dsDNA and ssDNA in hiPSCs

Knocking in genes in hiPSCs Key considerations

- Check the sequence of the homologous recombination arms
- Pick sgRNAs as close as possible to the DSB
- Use single-stranded donor templates
 - No background expression when delivering expression cassettes (e.g. CMV→GFP)
 - Lower rate of random integration than dsDNA
 - Lower toxicity than dsDNA donors
 - Repair mechanism more efficient than using dsDNA donors

Richardson *et al. Biorxiv* (2017). Yan *et al. Genome Res* **27**, 1099–1111 (2017).

Knocking in genes in hiPSCs Key considerations

- Bottleneck in homologous recombination experiments
- Homozygous vs. heterozygous

Knocking in genes in hiPSCs

Knocking in point mutations in hiPSCs Creation of isogenic cell lines

Homology-directed knockin of point mutations Use of synthetic ssDNA oligos (<200 bp)

Bottleneck in HR experiments: clone screening

Screening for SNP-containing clones using the SNP detection kit

Workflow of SNP detection kit

Clontech TakaRa cellortis

PROPRIETARY AND CONFIDENTIAL | The Title of the Presentation

Detection of all possible base mutations

Application in sample genotyping

FAH c.1009G>A (p.Gly337Ser)

■ %OCT4 ■ %TRA-160 ■ % SSEA-4

Knocking in genes in hiPSCs

Guide-it Long ssDNA Production System PCR-based method to create long ssDNA donors (>200 bp)

Guide-it Long ssDNA Production System PCR-based method to create long ssDNA donors (>200 bp)

Prepare an HDR template using a method such as cloning or fusion PCR

Production of ssDNA ranging from 0.5–5 kb in length

Knockin of $EF1\alpha$ -AcGFP1 at AAVS1 site

Isolated clonal lines without mutations

Tagging of endogenous genes in hiPSCs N-terminal fusion of AcGFP1 to Tubulin

ssDNA (AcGFP1-Tubulin)

Roberts et al. Biorxiv (2017).

Tagging of endogenous genes in hiPSCs N-terminal fusion of AcGFP to SEC16B

Knockin detection strategy

Knockin detection strategy

Proof of concept

Takara Bio and stem cell expertise

Cellartis products and services

- hPSC lines
- DEF-CS and DEF-CS Xeno-Free (2D, 3D, and GMP) for expansion and maintenance
- Media kits for gene editing and single-cell cloning
- Differentiation kits

Specialized cells, differentiated from hPS cells

- Definitive endoderm cells
- Hepatocytes
- Beta cells
- Cardiomyocytes

Human pluripotent stem cell services

- Sourcing, reprogramming, and banking
- Directed differentiation into multiple cell types
- Clinical-grade human embryonic stem cell line generation and banking
- Gene editing

Miscellaneous

- Power™ Primary HEP Medium for primary hepatocytes
- Adult neural stem cells
- Medium for expansion, maintenance, and differentiation of neural stem cells
- Antibodies and qPCR primers for characterization and detection

THANKS!

that's GOOD science!®